RhoA Ambivalently Controls Prominent Myofibroblast Characteritics by Involving Distinct Signaling Routes
نویسندگان
چکیده
INTRODUCTION RhoA has been shown to be beneficial in cardiac disease models when overexpressed in cardiomyocytes, whereas its role in cardiac fibroblasts (CF) is still poorly understood. During cardiac remodeling CF undergo a transition towards a myofibroblast phenotype thereby showing an increased proliferation and migration rate. Both processes involve the remodeling of the cytoskeleton. Since RhoA is known to be a major regulator of the cytoskeleton, we analyzed its role in CF and its effect on myofibroblast characteristics in 2 D and 3D models. RESULTS Downregulation of RhoA was shown to strongly affect the actin cytoskeleton. It decreased the myofibroblast marker α-sm-actin, but increased certain fibrosis-associated factors like TGF-β and collagens. Also, the detailed analysis of CTGF expression demonstrated that the outcome of RhoA signaling strongly depends on the involved stimulus. Furthermore, we show that proliferation of myofibroblasts rely on RhoA and tubulin acetylation. In assays accessing three different types of migration, we demonstrate that RhoA/ROCK/Dia1 are important for 2D migration and the repression of RhoA and Dia1 signaling accelerates 3D migration. Finally, we show that a downregulation of RhoA in CF impacts the viscoelastic and contractile properties of engineered tissues. CONCLUSION RhoA positively and negatively influences myofibroblast characteristics by differential signaling cascades and depending on environmental conditions. These include gene expression, migration and proliferation. Reduction of RhoA leads to an increased viscoelasticity and a decrease in contractile force in engineered cardiac tissue.
منابع مشابه
RhoA/Rho kinase mediates TGF-β1-induced kidney myofibroblast activation through Poldip2/Nox4-derived reactive oxygen species.
The small G proteins Rac1 and RhoA regulate actin cytoskeleton, cell shape, adhesion, migration, and proliferation. Recent studies in our laboratory have shown that NADPH oxidase Nox4-derived ROS are involved in transforming growth factor (TGF)-β1-induced rat kidney myofibroblast differentiation assessed by the acquisition of an α-smooth muscle actin (α-SMA) phenotype and expression of an alter...
متن کاملBeta8 integrin binds Rho GDP dissociation inhibitor-1 and activates Rac1 to inhibit mesangial cell myofibroblast differentiation.
Alpha(v)beta8 integrin expression is restricted primarily to kidney, brain, and placenta. Targeted alpha(v) or beta8 deletion is embryonic lethal due to defective placenta and brain angiogenesis, precluding investigation of kidney alpha(v)beta8 function. We find that kidney beta8 is localized to glomerular mesangial cells, and expression is decreased in mouse models of glomerulosclerosis, sugge...
متن کاملHypoxia reduces TGFβ1-induced corneal keratocyte myofibroblast transformation
PURPOSE The purpose of this study was to determine whether transient hypoxia had an effect on transforming growth factor beta1 (TGFbeta1)-induced rabbit corneal keratocyte myofibroblast transformation. METHODS Primary isolated rabbit corneal keratocytes were cultured in a serum-free medium. The effect of transient hypoxia treatment (1% oxygen, 4 h/day) on TGFbeta1 (5 ng/ml)-induced alpha-smoo...
متن کاملPhosphodiesterase type 5 inhibition reverts prostate fibroblast-to-myofibroblast trans-differentiation.
Phosphodiesterase type 5 (PDE5) inhibitors have been demonstrated to improve lower urinary tract symptoms secondary to benign prostatic hyperplasia (BPH). Because BPH is primarily driven by fibroblast-to-myofibroblast trans-differentiation, this study aimed to evaluate the potential of the PDE5 inhibitor vardenafil to inhibit and reverse trans-differentiation of primary human prostatic stromal ...
متن کاملSimvastatin reduces human atrial myofibroblast proliferation independently of cholesterol lowering via inhibition of RhoA.
OBJECTIVE Adverse atrial and ventricular myocardial remodeling is characterized by fibrosis, myocyte death or hypertrophy and fibroblast proliferation. HMG-CoA reductase inhibitors (statins) are widely prescribed cholesterol-lowering drugs that also appear to have beneficial effects on myocardial remodeling. Although statins are known to reduce myocyte hypertrophy, their effect on cardiac fibro...
متن کامل